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ABSTRACT
Using boundary-enhanced viscosity to control the mean circulation, a simple model can be created

and used for study of strong inertial effects in a western-intensi�ed calculation.The simplicity allows
for a greater number of strongly-inertial numerical experiments than computationally feasible in a
general circulation model.

This paper is an introduction to the behavior of this model, covering its general features. Some of
the inertial phenomena, including the primary balancesof the boundarycurrent and basin interior, the
temporal behavior, and the changes in the mean state across parameter space are presented. The
analysis of these phenomena focuses on the effects of eddies and the type of eddies present. The low
interior viscosity allows for more pronouncededdy effects.

As this model is intended for use in future studies, many of the diagnostic tools found to be useful
here are likely to be reused effectively.

1. Introduction

Fox-Kemper and Pedlosky (2004) demonstrate that the circulation strength of the
single-gyre can be controlled with lower interior viscosity by a combination of eddy
vorticity transport and boundary-enhanced viscosity. Once this control is achieved, it is
possible to produce calculations which remain western intensi� ed at a much higher
Reynolds number in the basin interior than is possible with constant viscosity.

Changing the viscosity in an inertial model is signi� cantly more interesting than
changing the viscosity in a linear Munk model. In the latter case, the widths of boundary
currents change, but the character of the solution does not. In an inertial model, the results
of changing the viscosity may be qualitative as well as quantitative. This paper explores
some of the behavior of the strongly inertial, western-intensi� ed Munk model, and presents
the most surprising and stimulating results found during this investigation. It is demon-
strated that the boundary layer vorticity balance, the basin interior vorticity balance, and
the temporal character are all qualitatively affected by lowering the interior viscosity. A
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particularly nonlinear effect is also discussed: the existence of solutions with substantially
different viscosities but the same time-mean � ow. The simplicity of the Fox-Kemper and
Pedlosky (2004) model allows for signi� cant explorationof parameter space at � ne resolution.

A recurring theme in the analysis of the model results is that ensuring western
intensi� cation seems to ensure a weakly nonlinear and thus nearly Sverdrup (1947)
interior. On the other hand, with low interior viscosity, the dynamics of the boundary
current must be dominantly nonlinear, requiring eddies and inertia in the primary
boundary-layer balance. The strongly heterogeneous character of this model is typical of
the ocean as well. It is therefore a good candidate for the study of nonlocal effects and
inhomogeneous turbulence. As an example, a simple nonlocal theory is presented in
Section 6.

Because of the dif� culty in analytic and numerical treatment, oceanographic inertial
effects are routinely ignored. Typically, this assumption is accompanied by an argument
that the inertial terms are small in comparison to the other terms in a particular region of the
ocean. However, it will be demonstrated here that some effects of inertia, even at modest
Reynolds numbers, should be considered as part of the oceanic general circulation. Some
of these results have profound implications for the setup and analysis of ocean models and
the interpretation of observationaldata. Our model allows detailed analysis of the effects of
inertia of a western-intensi� ed system with analogues of many inertial behaviors of the
ocean. A brief summary of the important sections of this paper follows.

Eddies play a critical role in the boundary layer structure. When a suf� cient sink of
vorticity exists, the meridional change in planetary vorticity of the boundary current is
balanced by the eddy � ux divergence. This turbulent western boundary layer is an
important feature of the circulation in this model. This boundary layer is what allows a
western-intensi� ed mean state even when the inertial boundary layer width is wider than
the frictional boundary layer width. The structure of the boundary layer in the main region
of eddy activity is explored in Section 3.

In Section 4, it is noted that some of the solutions with quite different viscosities have
very similar time-mean circulations.These homoparic calculationsare quite common. The
existence of these homoparic calculations may make it more dif� cult to correctly choose a
viscosity distribution, but in practice they can be quite useful for the study of eddies under
different viscosities.

The temporal behavior of the model contains both resonant and nonlinear interactions,
and the latter makes the spectrum broad as the interior viscosity decreases. The temporal
behavior of the less viscous calculations is discussed in Section 5. Particular attention is
paid to the resonant modes, as this features prominently in the theory of the counter-
rotating gyres in Section 6. An empirical orthogonal function analysis gives insight into the
nature of the spatial structure and temporal behavior of these modes. The details of the
analysis methods are presented in the Appendix.

The deviations from Sverdrup (1947) balance in the basin interior, including interior
closed circulations (counter-rotating gyres), are discussed in Section 6. Regions in which
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the time-mean circulation rotates in a sense counter to the wind forcing (as in Greatbatch
and Nadiga, 1999; Özgökmen and Chassignet, 1998) are common in the less viscous
calculations. Section 6 contains diagnosis of the balance of terms, directed numerical
calculations, and an analytic calculation. This calculation (following Pedlosky, 1965b)
demonstrates that the counter-rotating gyres that appear in the Eulerian mean are effec-
tively explained by the nonlinear interaction in the interior of basin modes generated near
the western boundary. This theory accounts for the seemingly required up-gradient mixing
and the dependence of the counter-rotating gyres on the frequencies of the boundary
current instabilities.The � nal section summarizes the results and discusses the relevance of
these results to other models and ocean observations.

2. Model

As in Fox-Kemper and Pedlosky (2004), the model results presented here are from a
257 3 257 Chebyshev polynomial pseudo-spectral numerical barotropic model in a
rectangular basin with spatially-variable viscosity to roughly parameterize boundary
physics not directly represented in the model. The nondimensionalequations governing the
model are:
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The variables c (streamfunction: u [ [2(]c/] y), (]c/] x)]) and z (relative vorticity) are
determined during integration. The initial conditions are resting (c 5 0). The boundary
conditions are slip (z 5 0) on the northern and southern ‘� uid’ boundaries and no-slip
[(]c/] x) 5 0] on the eastern and western ‘solid’ boundaries, as well as impermeability
(c 5 0 on the boundary). The basin is rectangular with y between 0 and 1 and x between 0
and xe. The calculations are differentiated by the values of the constant parameters: dI

(Charney, 1955, inertial boundary layer width), dS (Stommel, 1948, frictional boundary
layer width), and Rei and Reb (boundary-layer Reynolds numbers for the interior viscosity
and the boundary viscosity). For all of the calculations presented here, dI is 0.02 and dS is
0, while Rei and Reb vary.

In this model it is sensible to de� ne eddy as a perturbation from an Eulerian time mean.
The time mean was taken over the last half of each integration (after equilibration), so that
a Reynolds-averaged version of (1) may be analyzed:
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0 5 ¹ · ~2x̂c 2 dI
2uz 2 dI

2u9z9 1 dM
3 ¹z 2 dS¹c! 2 sin ~py!. (5)

Overbar denotes time mean and primes denote perturbations from that mean. The primary
effect of eddies in this model is given by the eddy � ux convergence (2¹ z dI

2u9z9). The
terms will be called, respectively: b-� ux convergence, mean � ux convergence, eddy � ux
convergence, lateral friction � ux convergence, bottom friction � ux convergence, and wind
forcing.

3. Boundary layer balances

Boundary-layer theories such as those of Stommel (1948), Munk (1950) and Charney
(1955) propose a balance of terms in the vorticity equation near the western boundary.
Figure 2 shows the meridional average (over different regions of the boundary layer) of the
terms in (5) from one numerical calculation so that a comparison can be made with these
theories. The averaging regions are indicated in Figure 1.

Figure 2a shows the meridional average in the region where the interior � ow enters the
boundary layer. In this region, the Charney (1955) inertial boundary layer solution can
exist (as demonstrated by Greenspan (1962)) as relative vorticity from the basin interior is
being imported into the boundary layer by the mean � ow. On the seaward side of the
boundary current (where the b-term still indicates a strong northward � ow, 0.04 , x ,

0.08) the balance resembles the Charney (1955) model as the advection of planetary
vorticity and relative vorticity are in balance, although in a region somewhat farther from
the boundary than the Charney scale predicts. For x , 0.03, there is a frictional sublayer
acting to enforce the no-slip boundary condition. In the middle region, 0.02 , x , 0.08,
eddies widen the in� uence of the frictional sublayer by transporting vorticity from this
region to the 0 , x , 0.02 region. In essence, the solution in the entry region of the
boundary layer agrees with the Il’in and Kamenkovich (1964) and Ierley and Ruehr (1986)

Figure 1. Contours of the time-mean streamfunctionof the Reb 5 0.25, Rei 5 5 calculationwith the
averaging regions of the boundary layer indicated.
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steady-state picture of an inertial boundary layer with a frictional sublayer, except that the
eddies join in to widen the in� uence of the frictional sublayer toward the interior.

Figure 2b shows the meridional average of terms in (5) in the intermediate region. Here, the
boundary layer structure is unlike any of the traditional steady-state theories. As in the western
boundary current theory proposed by Pedlosky (1965a), the presence of time-dependent
phenomena near the boundary is important, but here the critical feature is not the presence of
re� ecting remotely-forced Rossby waves; these eddies are locally generated by shear instabili-
ties. The eddies play a critical role in energy and vorticity transport in this region, and they are
present because the vorticity build-up near the boundary leads to shear instabilities.

On the interior side (0.03 , x , 0.08) of the boundary current in Figure 2b, the
balance is between eddy advection of vorticity and the advection of planetary vorticity,
while closer to the boundary ( x , 0.03) there is a frictional sublayer where friction
balances both the eddy � ux divergence and the b-� ux divergence. It is interesting that just
as the Charney (1955) inertial boundary layer theory fails, this alternative inviscid
boundary layer structure forms.

Edwards and Pedlosky (1998) � nd a similar boundary layer structure in a model where
cross-equatorial mass � ux is required in a relatively inviscid boundary layer. In their
model, a vorticity transformation is required for the � ow to cross the equator. Edwards and
Pedlosky (1998) � nd that at suf� ciently large Reynolds number, the eddies transport
vorticity from a relatively inviscid boundary layer to a frictional sublayer. The removal of
the vorticity from the boundary layer � uid by the eddies changes the vorticity of the
boundary layer � uid as it progresses.

While the boundary currents are similar here and in Edwards and Pedlosky (1998), the
mass � ux here occurs as a return � ow for the Sverdrup (1947) � ow, instead of being
speci� ed externally as in Edwards and Pedlosky (1998). Thus, this boundary layer results

Figure 2. (a-b) show the meridional average of the vorticity � ux convergencesas a function of x for
the Reb 5 0.25, Rei 5 5 calculation. (a) shows the average over region (a) (the entry region). (b)
shows the average over region (b) (the intermediate region).
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as part of the basin-wide vorticity budget rather than as a mass-� ux condition. Unlike the
Stommel (1948) and Munk (1950) layers, this boundary layer is not passive — the
boundary-enhanced viscosity is required in this model for such a boundary-layer structure
to exist rather than an inertially-dominated basin-� lling recirculation (without a Sverdrup
region) at Reynolds numbers much larger than one. Thus, in the presence of inertia, the
boundary current must remove suf� cient vorticity and � ux suf� cient mass for a Sverdrup
interior to be satis� ed. The exit region of the boundary layer is not shown as the
two-dimensional recirculation gyre is not illuminated by a meridional average.

In summary, the boundary layer structure when Rei is greater than one and the solution is
western intensi� ed is: (1) similar to the Charney (1955) steady inertial boundary layer in
the entry region, and (2) similar to the Edwards and Pedlosky (1998) eddy inertial
boundary layer in the intermediate region, and (3) a recirculation gyre in the exit region.

4. Homoparic calculations

Throughout this paper and the companion paper (Fox-Kemper and Pedlosky, 2004), we
emphasize the interchange of cross-streamline vorticity � ux between frictional � uxes at
low Rei and eddy � uxes at high Rei. This is because we intended to demonstrate how the
‘eddy viscosity,’ that is the arti� cially high viscosity in the basin interior, could be lowered
while maintaining a western-intensi� ed mean � ow (with the assistance of eddy vorticity
� uxes). The companion paper demonstrates that this can be achieved by adjusting Reb,
thereby representing the effects of unresolved boundary processes. While calibrating this
adjustment of Reb, it became clear that some of the calculations with quite different values
of Rei and Reb have very similar mean streamfunctions. For this reason, these calculations
are called homoparic, for same average. The existence of homoparic equilibria adds a
surprising twist to this picture; an Reb-controlled circulation will not only be western
intensi� ed and have a similar time-mean kinetic energy to another calculation with larger
Reb and smaller Rei, but the entire shape and structure of the time-mean circulation will be
similar. Two pair are examined in detail here. The � rst contains the Reb 5 0.5, Rei 5 3
calculation and the Reb 5 0.25, Rei 5 5 calculation. The second contains the Reb 5 3,
Rei 5 3 calculation and the Reb 5 0.25, Rei 5 8 calculation. The time-mean streamfunc-
tions of these calculations are shown in Figure 3.

Figure 4a illustrates that the contours of the maximum of the time-mean streamfunction
connect not only the homoparic pairs shown in Figure 3, but entire families of homoparic
equilibria sharing the same maximum streamfunction. All of the similar-looking mean
streamfunctions in Figure 3 of the companion paper are connected by the contours of
maximum streamfunction in Figure 4a.

While the time-mean circulations are quite similar in homoparic equilibria, the eddies
must play a different role. Figure 4b demonstrates that the homoparic pair members do not
lie along contours of the Nusselt-like ratio of total vorticity � ux to frictional � ux (see
Fox-Kemper and Pedlosky, 2004). The pair member with higher Rei has a larger Nusselt
ratio, indicating that the eddies are doing more of the vorticity transport across the c 5 0.5
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streamline. This streamline was chosen as a typical interior streamline, as it is halfway
between the maximum and the boundary in the linear Munk solution. In fact, the eddies
carry more of the vorticity � ux across almost all of the streamlines (Fig. 5a). The members
of a homoparic pair have the same input of vorticity by the wind and the same output of
vorticity by friction (although with different vorticity gradients at the boundary). Thus, in
order to have the same transport of vorticity across mean streamlines in the case with
higher Rei, the eddy � ux must be correspondingly larger.

Figures 4a and 4b indicate that lowering Reb will likely continue to control the
circulation for much larger Rei. The contours of maximum streamfunction curve sharply as
Reb 5 0 is approached, indicating that small changes in Reb will accommodate large
changes in Rei. Furthermore, the Nusselt ratio increases dramatically as Reb 5 0 is
approached for Rei larger than 3; the eddy � uxes become more important with decreasing
Reb and increasing Rei, just as required for continued control of the circulation.

Figure 3. The time mean streamfunction contours of two pair of homoparic calculations. (a) shows
the Reb 5 0.5, Rei 5 3 calculation and (b) shows the Reb 5 0.25, Rei 5 5 calculation. (c) shows
the Reb 5 3, Rei 5 3 calculation and (d) shows the Reb 5 0.25, Rei 5 8 calculation. Contour
interval 0.2, shaded regions are negative.
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The eddy vorticity � ux is quite different among the homoparic family members, because
of small changes in the mean � eld, but mainly because of large changes in the eddies
themselves. Figure 5b shows that there is signi� cantly more variance in kinetic energy,

Figure 4. Contours of the (a) maximum value of the time-mean streamfunctionand (b) Nuz(0.5), the
ratio of the total vorticity � ux to the frictional vorticity � ux across c 5 0.5 interpolated from the
results of calculations with different Reb and Rei . Dots indicate the location of the calculations
used for the interpolation, and the homoparic pairs from the preceding � gure are indicated with
stars.
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especially at low frequencies in the homoparic pair member with higher Rei. Furthermore,
the calculation with higher Rei takes signi� cantly longer to spin up, presumably due to the
balancing processes of the mean � ow and the eddy � uxes formed by instabilities of the
mean � ow.

The location and magnitude of the eddy kinetic energy is also quite different between the
two members in a homoparic pair (Fig. 6). Even though the time-mean streamfunction is
similar, the perturbation variance is quite different.

A simple trade between the frictional � ux and the eddy � ux explains Figure 7a, so that
the net effect of the eddy � uxes and frictional � uxes on the mean � ow changes very little.
However, the frictional � ux must ultimately remove the vorticity input, so if there is a large

Figure 5. (a) The ratio Nuz, the total vorticity � ux to the frictional � ux across a mean streamline, as a
function of mean streamfunction for the Reb 5 Rei 5 3 and the Reb 5 0.25, Rei 5 8 calculations.
(b) Total kinetic energy (** u¹cu2dA/2) versus time for the same calculations.

Figure 6. The time-mean eddy kinetic energy (u¹cu2 /2) for the homoparicpair of (a) the Reb 5 Rei 5
3 calculation and (b) the Reb 5 0.25, Rei 5 8 calculation.
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change in Reb there must be a large change in the vorticity gradient at the boundary to
compensate. Figure 7b shows a homoparic pair where the changes in Reb and Rei are larger
than those in the pair shown in Figure 7a. In Figure 7a it is the location of the mean � elds
which differs, rather than the magnitude. Along with the necessary change in the frictional
� ux convergence, the eddy, b, and mean � ux divergences are located farther away from the
boundary in the Reb 5 0.25, Rei 5 8 calculation.

In summary, homoparic equilibria exist over the whole parameter range studied. Their
parametric dependence seems to imply a continuation of the control of the circulation
proposed in the companion paper to much higher Rei. It remains unclear why these
equilibria have such similar time-mean � ows, even though there are substantial differences
between the eddies and boundary layer structure in the homoparic calculations. In the
conclusion, some implications of the existence of homoparic equilibria for modeling and
observational analysis are discussed.

5. Temporal structure

In a linear calculationmodel (e.g., Munk, 1950) a steady wind forcing always results in a
steady solution. Even with variable wind forcing, the response of a linear system is easily
predicted from a knowledge of the resonant modes of the system (per Pedlosky, 1965b).
On the other hand, the moderately large Rei calculations presented here have a signi� cant
range of variability on many time scales, despite the fact that the forcing is steady. This
section studies the nature of the instabilities, and attempts to connect it to a dynamical
framework. Much of this variability is best characterized as resonant natural modes, and
some of it appears forced by nonlinear interaction between modes. The interactions may
produce frequencies that can be quite slow, or even steady.

Even within the small parameter range studied here, there is a diversity of temporal
behaviors. As shown in Fox-Kemper and Pedlosky (2004), there is a qualitative difference

Figure 7. The meridional average of the terms in (5) for two pair of homoparic calculations.
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between solutions that have a recirculation gyre which reaches the eastern boundary
(inertially-dominated) and those that do not (western-intensi� ed). There is also a qualita-
tive difference in temporal behavior inertially-dominated and western-intensi� ed cal-
culations. The western-intensi� ed solutions can be further divided into three categories:
steady solutions, harmonic solutions, and chaotic solutions. Examples of the four cases are
easily distinguished in Figure 8 (in order of increasing kinetic energy): steady, harmonic,
chaotic, and inertially-dominated. The inertially-dominated calculations are higher in
kinetic energy than the chaotic western-intensi� ed calculations, but are proportionately
less variable.

The (lower Reynolds number) steady and harmonic calculationsare similar to the results
found in other studies. The lowest Reynolds number calculation shown in Figure 8 is
western intensi� ed, relatively linear, and steady. At slightly higher Reynolds number (e.g.,
Reb 5 1, Rei 5 1), the mean � ow remains western intensi� ed even without boundary-
enhanced viscosity, and the kinetic energy is seen to oscillate periodically with a few
dominant frequencies. This is the regime where instabilities are present, but only of a few
types, and they and their nonlinear interactions are strongly damped, so that secondary
nonlinearly-forced interactions are weak. Sheremet et al. (1997) present an excellent
examination of the eigenfunctions of linear perturbations about the steady-state solutions,
and their stability and frequency in a very similar model. The � nite amplitude variability in
this range of Reynolds numbers agrees well with the eigenfunctions they present. In
particular, the basin mode eigenfunctions (oscillatory modes related to the free, linear
Rossby wave modes of the basin, here slightly damped and changed by the background
� ow) are active in these calculations at this Reynolds number and higher as we shall see
below.

Figure 8. Total kinetic energy (** u¹cu2dA/2) versus time for different calculations.

2004] 205Fox-Kemper: Effects of eddies and low viscosity



To diagnose the primary modes of variability empirical orthogonal functions (EOFs)
were calculated from the perturbation from the time mean of the streamfunction and
vorticity. The details of the EOF analysis and some comments on the EOF representation
of basin modes may be found in the Appendix. Figures 9 and 10 show the EOFs—and the

Figure 9. The upper two rows contour the EOFs of relative vorticity variability for the six largest
variance EOFs for the Reb 5 1, Rei 5 1 calculation and give the percent of the total variance
associatedwith each EOF. The lower two rows give an estimate of the PSD of the presence of each
of the six EOFs, with an estimated 95% con� dence interval (dotted).
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power spectrum density estimate (PSD) of the presence of each EOF—for the variability in
z and c about the time mean for the Rei 5 Reb 5 1 calculation.

Figure 9 reveals that most of the variance in the relative vorticity is contained very near
the western boundary. Figure 10 shows that not all of the streamfunction variability is

Figure 10. The upper two rows contour the EOFs of streamfunction variability for the six largest
variance EOFs for the Reb 5 1, Rei 5 1 calculation and give the percent of the total variance
associatedwith each EOF. The lower two rows give an estimate of the PSD of the presence of each
of the six EOFs, with an estimated 95% con� dence interval (dotted).
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contained in the region near the boundary. In fact, most of the variance is in the � rst two
EOFs, which are large-scale features. If, however, the projection of the streamfunction
EOFs onto the � rst � ve linear basin modes is removed, the remaining pattern is
concentrated in the boundary current or recirculation gyre region like the vorticity EOFs
(not shown). Or, if one analyzes the streamfunction EOFs only within the boundary current
region, structures of closed eddies like those in the vorticity EOFs emerge.

The vorticity is a function of higher derivatives of the streamfunction, and therefore the
vorticity EOF is more strongly in� uenced by � ner features, while the large-scale stream-
function variability dominates the streamfunction EOFs. Thus, the variability is divided
into two types, small-scale features in the boundary current/recirculation gyre region, and
large-scale features outside of this region. These features are easily detected with the
vorticity and streamfunction EOFs respectively.

The large-scale features are quite wavelike. In fact, the two largest variance streamfunc-
tion EOFs closely resemble the expected spatial pattern of EOFs for the (m, n) 5 (1, 2)
linear basin modes. Furthermore, their frequency is close to the linear, analytic basin mode
frequency (0.0107bL versus 0.0113bL). The � rst two vorticity EOFs are also at the same
frequency, but do not resemble the relative vorticity pattern for a basin mode. Instead, the
matching frequency suggests that the small-scale features in the boundary current region
may be resonating the basin mode. If the basin mode is in a forced-dissipative balance, the
relative vorticity pattern is indicative of the nature of the forcing. The results of Sheremet
et al. (1997) suggest that there should be unstable eigenfunctionscapable of resonating the
basin modes, which tend to be more unstable than the basin modes themselves. Thus, the
� rst two streamfunction EOFs and the � rst two vorticity EOFs indicate a basin mode
resonated by near-boundary instabilities.

There are other modes present as well, even though the calculations are quite linear
(Rei 5 Reb 5 1). The remaining EOFs in Figure 10 are related to the wall-trapped
eigenfunctions of Sheremet et al. (1997). The � rst four vorticity EOFs have the same
frequencies as the � rst four streamfunction EOFs in Figure 10, and indicate that the
small-scale features are all concentrated near the boundary.

The 5th and 6th vorticity EOFs with frequency 0.033bL in Figure 9, however, are
consistent with variability forced by the nonlinear interaction of the basin mode-like
variability of the � rst and second EOFs and the wall-trapped instability of the 3rd and 4th
EOFs. Consider the nonlinear interaction of the following two functions with simple
dependence on y and time, but complicated dependence on x.

c1 5 f1~x! sin ~v1 2 l1y!, (6)

c2 5 f2~x! sin ~v2 2 l2y!, (7)

J~c1, ¹2c2! 1 J~c2, ¹2c1! 5 gp~x; l1, l2! sin @~v1 1 v2! 2 ~l1 1 l2!y#

1 gm~x; l1, l2! sin @~v1 2 v2! 2 ~l1 2 l2!y#.
(8)

208 [62, 2Journal of Marine Research



The functions gp and gm are complicated products of derivatives of f1 and f2 with
coef� cients depending on l1 and l2. However, the form of the nonlinear term depends on
the original wavenumbers and frequencies quite simply—the resulting term either depends
on the sums or the differences. This term will act as a forcing of two interaction modes,
which will then depend on either the sums or the differences of wavenumber and
frequency.

The sum of the frequency of the wall-trapped EOFs (#3 and #4, 0.0219bL) and the
frequency of the basin mode EOFs (#1 and #2, 0.0107bL) is very close to the frequency of
the 5th and 6th EOF in Figure 9 (0.033bL versus 0.0326bL). Furthermore, the
meridional scale of the interaction EOFs is smaller than the scale of either of the other
EOFs, consistent with a sum of wavenumbers (under the rough approximation of
� rst-order truncated Fourier transforms). Thus, it seems that these EOFs represent a
nonlinear interaction of the other two modes.

The other large peaks in the PSD above the basin mode frequencies are also located at
the sums and differences (and their sums and differences) of the two original frequencies to
within the resolution of the PSD, likely indicating nonlinear interactions. This harmonic
structure is characteristic of weakly nonlinear interactions. The Reynolds number is
modest in these calculations, so the interaction modes are not as strong as the modes which
generate them.

At higher Reynolds number (Fig. 11 and Fig. 12), the individual nonlinear interaction
modes are no longer detectable. In these less viscous calculations, extended chains of
nonlinear interactions occur and � ll in the spectrum between the frequencies of linear
instabilities and resonant modes. The PSDs of the EOFs show fewer peaks, and the signal
to background ratio of those peaks is much smaller.

The � fth EOF of Figures 11 and 12 is very low frequency, and may indicate nonlinear
forcing of the Sheremet et al. (1997) recirculation gyre mode. Based on their analysis, the
presence of the zero-frequency recirculation gyre eigenmode indicates the existence of
multiple steady solutions. The parameters of this calculation are close to the boundary for
multiple steady solutions, and the appearance of this mode may indicate the existence of
multiple equilibria in the time-dependent problem. The shape of the � fth EOF in Figure 12
indicates that the low frequency variability in this calculation (see also Fig. 8) can be
attributed to changes in the structure and location of the recirculation gyre. Presumably, the
pooling and draining of vorticity from the closed streamlines of the recirculation gyre in
the balance between wind forcing and eddy � uxes is associated with this variability. The
low-frequency variability may be a signal that the solution is traveling between the
neighborhoodsof multiple steady state solutions. An analysis similar to that performed by
Meacham (2000) would be revealing as to the reason why the variance of the chaotic,
western-intensi� ed calculations with boundary enhanced viscosity is so much larger than
the variance in the inertially-dominated calculations (see Fig. 8), but this is beyond the
scope of this investigation.

However, some frequency peaks remain in many of the PSDs even at higher Rei. The
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streamfunction EOFs remain strongly peaked (Fig. 12). The strong peaks are related to the
presence of basin modes. All of the EOFs shown except the � fth represent basin mode
variability.Even in this strongly nonlinear calculation,more than 60% of the basin-average
variance can be attributed to basin modes.

To test whether these EOFs truly represent basin modes, and to con� rm the roles of

Figure 11. The EOFs of relative vorticity variability as in Figure 8 but for the Reb 5 0.25, Rei 5 5
calculationwhich has much low-frequency variability.
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boundary current instability and resonating basin modes, a simple test was performed.
Calculations in basins of different sizes were performed. By varying the basin width from
200% to 40% while arranging the wind forcing to produce a boundary current of the same
transport and width as in Figures 9 and 10 (see Fox-Kemper (2003) for details) the
re� ection of waves at the eastern boundary was changed while leaving the western
boundary current relatively unchanged.

Figure 12. EOFs of streamfunction variability as in Figure 9 but for the Reb 5 0.25, Rei 5 5
calculation.
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The relationship between the boundary current instabilitiesand the basin modes strongly
affects whether modes are excited. Since the basin modes in the short basin are all lower
frequency than the boundary instabilities, no basin modes result.3 In the short basin the
highest basin mode frequency is 0.0094bL for the gravest mode, and the lowest frequency
instability in that calculation occurs near 0.0125bL.

The relationship between the boundary current instabilitiesand the basin modes strongly
affects which modes are excited and how strongly they are excited. The � rst two EOFs of
Figure 10 (the square basin) resemble the (1, 2) linear basin mode. In Figure 13 (the long
basin), the � rst two streamfunction EOFs resemble the (3, 2) basin mode and the 3rd is
similar to the (1, 2) basin mode. Weaker EOFs also resemble the basin modes in standing
wave pattern and frequency. The frequencies of dominant boundary current vorticity EOFs
are nearly constant with regard to the basin dimension (0.0107bL and 0.0219bL for the
square basin versus 0.0109bL and 0.023bL for the long basin). However, different basin
modes are excited with different amplitudes because the resonant frequencies change with
the basin dimension. In the square basin, the free, linear basin modes corresponding to
those excited have a frequency of 0.0113bL , while in the long basin the free, linear
frequencies are 0.0101bL and 0.0123bL. Thus, as is typical for forced oscillators, the
basin modes have the same frequency as the forcing, but the amplitude of each mode
depends strongly on how close the forcing frequency is to the resonant frequency.

While the short and long basin cases presented here are at only Rei 5 Reb 5 1, a similar
comparison with a long basin at Reb 5 Rei 5 3 (see Figs. 15 and 16) con� rms that this result
holds at higher Reynolds number as well. In fact, EOF analysis con� rms that the basin modes
continue to be the dominant EOFs of basin-wide streamfunction EOFs over the all Reynolds
numbers exploredhere, but which basin modes are excited and by how much varies. Of course,
the EOF analysis is biased somewhat in what it detects (see Appendix).

In summary, the single-gyre calculation is unsteady and temporally complicated, in
contrast to the steady and linear solutions to the wind-driven problem. There are numerous
modes of instability of the mean state, and these modes often resonate the basin modes and
interact nonlinearly with each other. At low Reynolds number, EOF analysis does a good
job of capturing almost all of the variance in modes resembling the eigenfunctionsof linear
perturbation studied by Sheremet et al. (1997). At higher Reynolds number, these
interactions lead to a broadband spectrum for many of the EOFs and for the total kinetic
energy. Over all of the parameter range studied here, however, most of the streamfunction
variance was still in resonating basin modes.

6. Basin interior balances and counter-rotating gyres

Figure 3 reveals the presence of closed circulations in the southeast corner of the
basin—a common result in the less viscous calculations shown here and in Fox-Kemper

3. There may be Rossby wave modes present as linear perturbations of the absolute vorticity gradient in the
recirculation gyre, rather than the planetary vorticity gradient.
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and Pedlosky (2004). The Eulerian-mean � ow in these regions is in a direction opposite to
that of the wind-stress; they counter-rotate. These counter-rotating gyres are present in the
� gures of Holland and Lin (1975); Kamenkovich et al. (1995); Sheremet et al. (1995), but
are signi� cantly weaker than those present here and go uncommented upon in the text of
those papers.

Counter-rotatinggyres are not present in linear calculations (where the Sverdrup relation
is satis� ed in this region) or in steady-state solutions of the traditional nonlinear problem

Figure 13. First 3 EOFs of streamfunctionas in Figure 9 but for the Reb 5 1, Rei 5 1 calculations in
a long basin of zonal width 2 (upper 2 rows) and a short basin of zonal width 0.4 (lower 2 rows).
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with lateral friction and slip or no-slip boundary conditions (see, for example Ierley and
Sheremet (1995)). In fact, Barcilon (1998) proves that such features cannot exist in the
steady-state solutions of the inertial Stommel (1948) model. Almost all of the vorticity
input within these mean streamlines is moved toward the boundary by eddies (see Fig. 9b
of the companion paper where c is less than zero). During this process, the eddies and
mean � ow interact in such a way as to have an average circulation in a direction counter to
the direction of the wind stress.

Greatbatch and Nadiga (1999) and Holm and Nadiga (2003) were perceptive in noting
the importance of the appearance of counter-rotating gyres (which they call outer gyres)
across double-gyre calculations with different boundary conditions and different friction
operators. They propose parameterizations that cause similar gyres in coarse resolution
calculations without eddies. In Greatbatch and Nadiga (1999), a parameterization of the
effects of eddies is given in which the eddy parameterization � uxes vorticity down the
mean gradient (equivalent to k¹(dI

2z 1 y)) with a boundary condition that allows for no
� ux of absolute vorticity out of the basin. The solution which they obtain from this
parameterization is steady, yet it possesses counter-rotating regions. This parameterization
is not allowed in the models discussed here, as the single-gyre forcing has a net vorticity
input which could not be balanced were the boundary condition no � ux of absolute
vorticity.

Salmon et al. (1976) propose that the most likely equilibrium statistical mechanical
solution to the quasi-geostrophic equations is the one which maximizes entropy produc-
tion. Griffa and Salmon (1989) were able to show that in a closed basin the maximal
entropy production states for the unforced, non-dissipative calculation are modes resem-
bling those of Fofonoff (1954). Counter-rotating regions found in other models have been
attributed to such processes (e.g., Griffa and Castellari, 1991; Özgökmen and Chassignet,
1998). The counter-rotating gyres seen here do not appear to be of this variety, as the
Fofonoff (1954) modes are primarily a balance between mean advection of vorticity and
the b-term. The symmetry under x ® 2x of the equation for this balance leads to inertial
boundary currents on both the eastern and western boundaries. The ansatz of the Fofonoff
solution—that the absolute vorticity be a function of c—is also not satis� ed in the
counter-rotating region (see Fox-Kemper, 2003). The question of whether the counter-
rotating gyre represents the maximal entropy production solution remains open, but it is
outside the scope of this investigation.

Figure 14 shows the meridional and zonal averages of the terms in (5) within the
counter-rotating region. The counter-rotating gyres have a strong asymmetry from east to
west and the primary balance of terms in (5) is wind forcing balanced by eddy � ux
convergence. The unforced, non-dissipative limit sought by Griffa and Salmon (1989) is
thus not applicable here. This section therefore presents an alternative to the preceding
theories, which is based on the prominence of resonating basin modes demonstrated in the
last section and the primary balance of terms in the vorticity equation (e.g., Fig. 14).

Pedlosky (1965b) solves for the weakly-nonlinear interaction of basin modes forced by a
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traveling wave, wE 5 cos (kx 2 vt) sin (npy), in a homogeneous model with bottom
friction only. In the weakly nonlinear limit, the zeroth-order solution responds linearly to
the wind forcing while the � rst-order solution contains a response to the nonlinear
interaction of the zeroth-order solution. Pedlosky (1965b) demonstrates that the zero-
frequency response to the nonlinear interaction can possess regions which rotate counter-
clockwise in the southern portion of the basin (for n 5 1 basin modes). However, Pedlosky
(1965b) balances the eddy � ux convergence with the b-term, whereas the counter-rotating
regions here are in primary balance between the eddy � ux convergence and the steady
wind forcing with the b-term as a next-order correction (see Fig. 14). Regardless, the
results of Pedlosky (1965b) show that a nonlinear interaction of basin modes can cause an
Eulerian-mean circulation tantalizingly similar to the counter-rotating gyres.4

The eddy � ux convergences and divergences in the region of the counter-rotating gyre
(Fox-Kemper and Pedlosky 2004, Fig. 7b) have large spatial scale indicating basin-scale
motions. Also, movies of the vorticity evolution reveal wave-like motion of absolute
vorticity present in this region propagating from east to west, rather than coherent vortices.
In the preceding section, it was demonstrated that much of the variance can be attributed to
basin modes, and this is especially true in the eastern part of the basin where the
counter-rotating gyres are.

A calculation was performed with a zonally elongated basin with wind forcing only in

4. The Lagrangian mean result will be quite different, as free waves do not affect the Lagrangian mean (Moore,
1970). What the Lagrangian mean in this forced-dissipative system will be is an interesting question, but outside
the scope of this investigation. Brie� y, note that since every � uid parcel is continually exposed to wind vorticity
input, all parcels must eventually enter a frictional region to remove this vorticity. Since the Eulerian mean � ow
does not directly enter the frictional region, there must be a chaotic advection of Lagrangian � uid parcels into the
frictional region.

Figure 14. (a) and (b) show the meridional and zonal averages, respectively, of vorticity � ux
convergences in the region where c , 0 (the counter-rotatinggyre) from the Reb 5 0.25, Rei 5 5
calculation.
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the western half of the basin to demonstrate the importance of the basin modes in
generating the counter-rotating gyres. In this calculation, the linear Munk solution extends
only halfway across the basin, yet there are clearly Eulerian-mean circulations which occur
in the eastern half of the basin where there is no wind forcing (Fig. 15a). In fact, there are
regions which rotate counterclockwise as counter-rotating gyres do, and there are regions
which rotate clockwise as well: co-rotating gyres.

Figure 16 shows the meridional and zonal averages of the terms in (5) in the
counter-rotating region. In Figure 16a, only the westernmost part of the counter-rotating
region experiences the wind forcing and the easternmost region is frictional. The middle of
the counter-rotating region has a balance between the b-term and the eddy � ux divergence,
just as the resonant solutions in Pedlosky (1965b) do.

Figure 15. (a) The time-mean streamfunctionshowing the counter-rotatinggyres in a calculationin a
elongatedbasin with Reb 5 3, Rei 5 3. There is wind forcing only in the western half of the basin.
(b) The prediction for the interior time-mean streamfunction with analytic basin modes (3, 1),
(2, 1), (1, 2), (1, 1), and (2, 2) with variances from EOF diagnosis. The contour interval is 0.025,
and regions of negative streamfunctionare shaded.

216 [62, 2Journal of Marine Research



A simple analytic model of the counter-rotating gyres synthesizes and clari� es some of
these notions. Suppose that the sources of variability of the western boundary current and
recirculation gyre are modeled simply by a periodic forcing in a region near the western
boundary. As a useful simpli� cation, bottom friction will be used instead of lateral friction.
Note, however, that the western boundary layer with bottom friction will not produce
instabilities; the instabilities of the boundary current are imposed by hand. The barotropic
vorticity equation is

]¹2c

]t
1

]c

]x
1 dI

2J~c, ¹2c! 1 dS¹
2c 5 2sin ~py! 1 Af sin ~nf py! cos ~vf t!e

2x/df. (9)

The Jacobian is denoted J(a, b) [ (]a/] x)(]b/] y) 2 (]b/] x)(]a/] y). The form of the
forcing is chosen for simplicity and to resemble a term in a Fourier-Laplace-Fourier
expansion of a more complex instability. For simplicity, only the square basin case will be
calculated explicitly here.

Consider the weakly nonlinear perturbation series: c 5 c0 1 dI
2c1 1 . . . under the

assumption that dI ! 1. The zeroth-order equations will be linear, so the time-dependent
and time-mean equations can be decoupled and solved independently. Once this is
accomplished, the nonlinear interaction of the time-dependent, zeroth-order, linear solu-
tion will have a contribution to the � rst-order mean equation. It will be shown that
including this correction to the zeroth-order (Sverdrup, 1947) mean � ow gives excellent
agreement to the counter-rotating gyres.

To begin, dS can be any magnitude. Thus, neglecting the inertial term,

]¹2c0

]t
1

]c0

]x
1 dS¹

2c0 5 2sin ~py! 1 Af sin ~nf py! cos ~vf t!e
2x/df. (10)

Figure 16. (a) and (b) show the meridional and zonal averages, respectively, of terms in (5) in the
region where c , 0 (the counter-rotatinggyre) from the Rei 5 Reb 5 3 elongatedbasin calculation
with wind only in the western half of the basin.
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This equation is linear, so it is uncoupled into a steady equation (similar to Stommel, 1948)
and a time-dependent equation (similar to Pedlosky, 1965b).

]c0

]x
1 dS¹

2c0 5 2sin ~py!, (11)

]¹2c90
]t

1
]c90
]x

1 dS¹
2c90 5 A f sin ~nf py! cos ~vf t!e

2x/df. (12)

First guesses at the solutions gives the interior solution (Sverdrup, 1947) and a particular
solution to the time-dependent equation.

c0 < ~1 2 x! sin ~py!, (13)

c90 < 5@wpe
~2x/df!e ivf t sin ~nfpy!#, (14)

wp ;
Af

iV f ~d f
22 2 n2p2! 2 d f

21 , (15)

V f ; v f 2 idS. (16)

The real part is denoted by 5.
The boundary conditions are imposed by addition of homogeneous solutions. This

results in somewhat complicated formulas. The steady solution is the Stommel (1948)
solution for the steady problem, valid for all values of dS, (17). The time-dependent
solution for all values of dS is (18).

c0 5
sin ~py!

p2dS
F 1 2 eB

eA 2 eB eAx 2
1 2 eA

eA 2 eB eBx 2 1G ,

(17)

A ;
21 1 Î1 1 4p2dS

2

2dS
, B ;

21 2 Î1 1 4p2dS
2

2dS
.

c90 5 5F wp sin ~nf py!eivf tSe~2x/df! 1
sin ~a~x 2 1!!

sin ~a!
eix/2V f 2

sin ~ax!

sin ~a!
e2~1/df!1@i~x21!/2V f#D G ,

(18)
a ;

Î1 2 4n f
2p2V f

2

2V f
.

At the next order, nonlinearity couples the different frequencies (and introduces the
possibility of a continuous frequency spectrum of singular non-normal modes, which will
hereafter be ignored for simplicity). The counter-rotating gyres are a feature of the
time-mean � ow, so we consider only the Reynolds-averaged equation for the � rst-order.
Secular modes do not appear to be a problem as the nonlinear interaction terms are not
proportional to other basin mode solutions.
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]c1

]x
1 dS¹

2c1 5 2dI
2J~c0, ¹2c0! 2 dI

2J~c90, ¹2c90!. (19)

Thus, the mean � ow correction involves the mean advection of mean relative vorticity and
the eddy advection of eddy relative vorticity. Using the solutions to the uncoupled linear
problems, the leading-order nonlinear interaction can be determined.

By differentiating the steady solution valid for all dS, (17), then taking limit of small dS,
the correct nonlinear product is formed.5 All of the nonlinear terms for the mean-mean
interaction vanish exponentiallyoutside of the boundary layer except for

d I
2J~c0, ¹2c0! <

d I
2 sin ~2py!

2p3dS
2 A3e2A1Ax <

1

2
p3dSdI

2 sin ~2py!. (20)

If the periodic forcing is resonant with a basin mode—that is, vf 5 ~2pÎm2 1 n2!21

for some integer m , and n 5 nf (as the basin modes are orthogonal in y)—then to lowest
order in dS the time-dependent solution becomes

c90 5 5F 4pimw0v f
3

dS
sin ~mpx! sin ~npy!eivf t1~ix/2vf!~21 1 ~21!me2~1/df!2~i/2vf!!G . (21)

The constant w0 is wp with dS 5 0. Note that there is no directly-forced particular
solution—the resonating basin modes dominate.6 This approximation can be used to give
the approximate nonlinear interaction outside of the boundary current and recirculation
region, resulting in

d I
2J~c90, ¹2c90! 5

2m3np4v f
4uw0u2d I

2

dS
2 sin ~2mpx! sin ~2npy!

3 S1 2 2~21!me2~1/df! cos S 1

2vf
D 1 e2~2/df!D .

(22)

Expressing the interaction as a function of the average variance of the basin mode,

d I
2J~c90, ¹2c90! 5 4p4mn~m2 1 n2!d I

2 sin ~2mpx! sin ~2npy! E
0

1 E
0

1

~c90!
2dxdy. (23)

5. Often, a boundary-layer approximation such as c0 ’ (1 2 x) sin (py)e2 x/d S 1 O(dS) is presented as the
solution to Stommel’s model instead of the Stommel (1948) solution which is valid for all dS. However, because
the change in streamfunction in the boundary layer occurs in an O(dS) layer, the errors in the x-derivative are
O(1), and the approximation cannot be used to accurately estimate J(c0, ¹2c0). For this reason, the solution
valid for all dS is used here.

6. For this reason, the higher order in dS corrections do not strongly affect the interior solution. Thus, unlike
the Stommel approximation, this approximation can be used to estimate J(c0, ¹2c0). This was con� rmed by
calculating the nonlinear interaction of the full solution (with great effort by Mathematica).
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The mean vorticity � ux convergence is very large within the western boundary current
but O(dSdI

2) outside it. On the other hand, the eddy term is O(uw0u2dI
2/dS

2) outside of the
forcing region.7 Thus, while the eddy � ux convergence is much smaller than the mean � ux
convergence in the boundary layer, it dominates outside of the boundary current. In fact,
since the rate of change of vorticity in the boundary current instabilities is much larger than
the wind input, w0 can be large enough for this term to be larger than the wind forcing in the
interior as well. So if there is a resonating mode the � rst nonlinear correction to the interior
solution is

]c1

]x
5 2dI

2J~c90, ¹2c90!. (24)

Combining the � rst two orders, a time-mean interior solution in a Sverdrup-like balance
emerges, except that in addition to the wind forcing, the eddy vorticity � ux convergence
appears, to wit,

c0 1 c1 5 ~1 2 x! sin ~py! 1 E
1

x

dI
2J~c90, ¹2c90!dx. (25)

Thus, co-rotating and counter-rotating gyres will be superposed on the Sverdrup solution
when the interior viscosity is small and the basin modes are resonated. These gyres can be
viewed by subtracting the Sverdrup (1947) solution.

If more than one basin mode is resonated, a � rst-order contribution of their mutual
interaction affects the time mean only if they are driven at the same frequency. In that case,
resonance occurs when 1/v f 5 2pÎn1

2 1 m1
2 5 2pÎn2

2 1 m2
2. For example, the square

basin (2, 1) and (1, 2) mode interaction is

J~c90~1, 2!, ¹2c90~2, 1!! 1 J~c90~2, 1!, ¹2c90~1, 2!!

5 dS
222p4v f

4uw0~1, 2!u uw0~2, 1!u$4pv f cos ~px! sin ~py! sin ~f!

3 @22 1 6 cos ~2px! 1 14 cos ~2py! 2 18 cos ~2px! cos ~2py!#

1 cos ~f!~sin ~px! 2 3 sin ~3px!!~sin ~py! 2 3 sin ~3py!!%.

(26)

The constant f is the phase difference between the modes. This cross-mode interaction is
critical to the accuracy of the prediction in Figure 17. The phase constant was determined
empirically for that � gure.

This obvious � aw in this analytic model is that it does not predict which basin modes
will be excited and what their amplitudes will be, as the periodic forcing used is just a
proxy for the real instabilities. Nonetheless, by using the EOF diagnostics above, the

7. The terms involving e2 (1/d f) represent the basin mode generated by the re� ection of the directly-forced
particular solution at the eastern boundary.These terms are negligible if df is of the order of the recirculation gyre.
Also, if the aspect ratio of the instability forcing is roughly one, then mvf and nvf are O(1).
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variance of each basin modes can be estimated. Setting the time-averaged, basin-averaged
variance of an analytic basin mode equal to the sum of the squares of the singular values
divided by the number of grid cells and time steps for the two EOFs for that basin mode
gives the appropriate amplitude of each mode. The nonlinear interactions is determined
using (22) and (26). For the calculation shown in Figure 15a, the � ve largest basin modes
were used to predict the interior solution (25) was calculated using the analytic, linear form
of the basin modes, i.e., (22) and (26). The resulting interior solution is shown in Figure
15b. There is a good agreement between the interior solution and the theory, and the
dominant balance of terms in the interior is precisely as diagnosed from the numerical
results.

Compare this wave-mean interaction with a down-gradient absolute vorticity � ux.
Because the absolute vorticity in the basin interior is dominated by the planetary vorticity
background (dI

2z 1 y ’ y), in order for the � ux to be down-gradient the vorticity of the
southern (northern) interior should be raised (lowered). The analysis above shows that the
nonlinear interaction of the n 5 1 basin modes (which is proportional sin (2py)) will also
have this effect. However, this is coincidental, because if there is signi� cant variability in
modes where n Þ 1, then it becomes clear that the local absolute vorticity gradient is
irrelevant to the shape of the resulting counter- and co-rotating gyres. Much of the variance
in Figure 12 is in the second and third EOFs which are n 5 2 basin modes, and in this
calculation counter-rotating and co-rotating gyres unrelated to the local absolute vorticity
gradient occur (Fig. 17a). But, by diagnosing the basin modes present using the EOFs and
calculating the resulting steady circulation, a similar interior solution— complete with
‘up-gradient’ regions—is produced.

The theory presented in this section is not complete. Primarily, it doesn’t predict which

Figure 17. (a) The time-mean streamfunction minus the Sverdrup interior solution for the Reb 5
0.25, Rei 5 5 calculation reveals a counter-rotating and co-rotating gyre pattern irreconcilable
with a local down-gradient absolute vorticity � ux. (b) The prediction using basin modes (1, 1),
(1, 2), (2, 1), and (2, 2) with variances from EOF diagnosis.
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basin modes will be excited. Perhaps an extension of Ben Jelloul and Huck (2003) to
include the western boundary current region could close this model into a parameteriza-
tion. Using the EOFs to generate the basin mode variance is an inexact method, and Figure
15b could be improved by better estimates of the variances. Also, corrections of the next
order, where the shape of each basin mode is affected by nonlinearity would improve the
results. Obviously, including some of these effects would improve the agreement in
Figures 15 and 17.

In summary, the co-rotating and counter-rotating gyres superposed on the Sverdrup
(1947) interior solution are a natural result of resonating basin modes. The analysis reveals
that although the � rst-order correction to the mean � ow in the boundary current is the
convergence of mean � ux, in the interior the zero-frequency eddy � ux convergence is the
important nonlinear correction when the boundary current instabilities resonate the basin
modes. This correction is responsible for the counter-rotating and co-rotating gyres and
explains their nonlocal and ‘up-gradient’ characteristics. This theory relies on the weak
nonlinearityof the basin interior and the resonance of basin modes. In a different parameter
regime it is easy to imagine strong nonlinearities, such as coherent vortices leaking from
the boundary current into the interior or exerting an important nonlocal effect (as suggested
in Pasquero et al. (2001)), in which case the theory of Holm and Nadiga (2003) or Griffa
and Castellari (1991) may be a more appropriate model. However, it seems unlikely that a
Sverdrup balance will be possible in the presence of such strong eddy radiation from the
boundary current. Thus, which limit is more representative of the ocean is an observational
question. In the model used here, the nearly Sverdrup interior—in calculations with
constant viscosity or controlled by boundary-enhancedviscosity—and the resonating basin
modes provide the correct conditions for this theory.

7. Summary and discussion

Once large Rei has been reached, the single-gyre model exhibits many interesting
behaviors. Through the use of boundary-enhanced viscosity representing unresolved
physics, this limit can be studied in western-intensi� ed calculations. In this paper, some of
the interesting effects of the eddies that arise in the case of large Rei have been presented.

Once the interior viscosity is small enough, the nonlinear effects of eddies become
pronounced. They play a critical role in the boundary layer, where an inviscid steady
solution cannot exist. Radiation of waves from the strongly nonlinear boundary current
plays a role in the interior, dominating the variability there. The nonlinear self-interaction
of these waves produces steady counter-rotating and co-rotating gyres superposed on the
Sverdrup � ow. The temporal behavior is diverse, including a broad spectrum indicative of
their weakly-damped nonlinear interaction and peaks at the natural frequencies of the
basin. The slow adjustment of the strength and location of the recirculation gyre, linked to
smaller eddies � uxing vorticity into these closed streamlines, leads to large variance, low
frequency variability. With different parameters, the effects of eddies are able to exchange
with the effects of friction, producing homoparic calculations.
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Demonstrating that the structure of the turbulent boundary layer proposed by Edwards
and Pedlosky (1998) results in a western-intensi� ed calculation with a larger inertial width
than frictional width is an important addition to the extant boundary-layer theories. This
extends the inviscid theory of Charney (1955) and its extension by Ierley and Ruehr (1986)
to a boundary current structure capable of closing the basin vorticity budget. This boundary
current structure features prominently in the multiple-gyre case as well (Fox-Kemper,
2004).

Although this model is highly idealized, it is likely that analogues of the inertial effects
here will occur in more complex and inclusive models, with potentially signi� cant
implications. For example, typically ocean models run for climatological time scales are
coarsely-resolved enough to be nearly non-inertial. However, the low-frequency motions
found in this simple model (the adjustment of the recirculation gyre, nonlinear interactions,
and the counter-rotating gyres) may offer climatologically signi� cant intrinsic variability.
The speci� c nature of this missing variability could have signi� cant impacts on climate
state transitions, as the variability of the boundary current or recirculation gyre may have a
quite different effect from other variability. Thus, these results have some relevance in
determining the type of variability to be externally imposed in coarse models to stimulate
state transition.

Another example concerns the tuning of viscosity in ocean general circulationmodels. It
is becoming common to have variable viscosity in these models (e.g., Large et al., 2001;
Grif� es and Hallberg, 2000). If homoparic equilibria exist in those models, the tuning must
take into account not only the time-mean � elds, but also the spatial distribution of the
variability, to ensure that the tuning leads to the desired homoparic equilibrium. For
example, if an inverse method (e.g., Wunsch, 1996) is used to determine the best viscosity
for a model, then the cost function must include information about the variability as well as
the mean state. Otherwise, the inverse method will fail to distinguish the multiple solutions
available to minimize the errors in the mean state. If homoparic equilibria exist in other
contexts, then physically-based closures, such as the local Smagorinsky (1963) nonlinear
viscosity and the nonlocal ‘alpha models’ (e.g., Holm and Nadiga, 2003), should also be
tested according to their predictions for variance (both resolved and implicit) as well as
mean state.

Given the idea of vorticity � ux exchange between friction and eddies presented in the
companion paper, it is not surprising that the circulation strength can be controlled by the
eddy � uxes. It is quite surprising, however, that the basin-scale features of the mean � elds
are so similar in homoparic calculations despite the profound changes to the boundary
layer and eddies; there is no obvious constraint which requires that such a con� guration
must exist for each value of Rei. Apparently, the Sverdrup interior and the shape of the
recirculation gyre are tightly constrained, despite the mechanism of vorticity � ux and the
precise location of the boundary current relative to the boundary. Also, it is well-known
that resolved eddies tend to � ux vorticity strongly along the mean gradient rather than
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down it, and the frictional � ux is, by de� nition, down-gradient. How it is that these � uxes
end up producing such similar time means seems worthy of future inquiry.

The homoparic calculations themselves present an excellent tool for study of the
compensating changes in friction and eddies. By following the contours in Figure 4a, the
changes in the eddies and friction can be studied without the complicating factor of
signi� cant changes to the mean � ow. An excellent example might be to study the response
the members of a homoparic pair to stochastic forcing. It has already been mentioned that
the pair member with larger Rei took longer to spin up and had more variance about the
mean. Thus, the two pair members may have signi� cantly different responses to variable
forcing as well.

In this sense, within a homoparic family, the spatially-variable viscosity acts as a
parameterization of the eddies. More or less intense resolved eddies, and less or more
‘eddy-viscosity � uxes,’ can be selected. Furthermore, for simplicity, almost all of the
calculations performed here were at the same resolution. However, the calculations with
smaller Rei are unchangedby a signi� cant reduction in resolution, so in this sense changing
the viscosity to follow the homoparic contours allows for a ‘parameterization’ useful in
coarse models. However, the friction variation along a homoparic contour is not a true
parameterization, as there is no a priori knowledge about the location of the homoparic
contours, nor any physical rationale for their location in parameter space.

The strong frequency dependence of the basin modes and subsequently the counter-
rotating gyres resulted from some of the instability frequencies of the boundary current
being near to resonant frequencies of the basin. It is unclear whether basin modes will be
resonated to the same degree in baroclinic models or models with realistic topography, or
the ocean itself. Even the determination what the resonant modes of a basin with complex
topography is non-trivial (Platzman, 1972; Primeau, 2002). However, the broadband
spectrum of the more nonlinear calculations here suggests that for suf� ciently high
Reynolds number all frequencies will have some variance, including the resonant ones.
Satellite observation of Rossby waves (e.g., Chelton and Schlax, 1996) is in its infancy, but
already fairly large amounts of variance (’20%) in the ocean interior can be explained
with Rossby and Kelvin waves (Fu et al., 1991; Webb and de Cuevas, 2003). Recent
ship-based observations of the � rst baroclinic basin mode (Hagen, 2003) are also an
encouraging con� rmation of the relevance of this work. Correcting for the effects of mean
shear on these waves may increase the variance explained (Killworth et al., 1997).

One might suggest that the presence of the basin modes might be inferred from the
presence of counter-rotating gyres. However, the complications of local topography and
local wind variation make this task nearly impossible. In principle, a steady numerical
model could be used to produce a reference state with which to compare observations.
However, in practice, the wind stress climatologies over the oceans are not known
well enough even to produce consistent results across different wind products (Townsend
et al., 2000). The bottom velocities are also poorly known, making the determination of
the topographic stretching term in the linear vorticity equation dif� cult (Wunsch and
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Roemmich, 1985). The counter-rotating gyres are surely lost in the uncertainty of what the
correct linear vorticity balance is. However, in analyzing the results of relatively inertial
numerical models, they play an important role.

The counter-rotating gyres suggest that parameterizing the inertial effects of relatively
inviscid, but weakly nonlinear, interior � ows will be impossible with down-gradient
mixing or even any local theory. If there are regions of the ocean driven by remotely-forced
waves, must a high-resolution, eddy-permitting model of the boundary current be used to
force them? Might a random variabilitymodel of the boundary current with the appropriate
spectra suf� ce?

Stommel’s simple single-gyre model still produces a number of interesting questions,
many of which will have to be addressed in more realistic models in the future.

Acknowledgment. The author would like to thank his thesis advisors, J. Pedlosky and
P. Malanotte-Rizzoli for their help and guidance. Thanks also to S. Jayne who contributedalmost all
of the computer resources. Discussions with G. Flierl, J. Franklin, M. Spall, V. Sheremet, R. Ferrari
and C. Wunsch greatly improved this work and its presentation.Useful comments were provided by
two reviewers; one notable contribution was the idea for construction of Figure 4a. B.F-K. was
supported in part by a ONR-supported NDSEG Fellowship, an MIT Presidential Fellowship, NSF
OCE 9910654, a GFDL/Princeton University postdoctoral fellowship, and a NOAA Climate and
Global Change postdoctoral fellowship (managed by UCAR).

APPENDIX

Empirical Orthogonal Function Analysis

This appendix describes the method of determination of the empirical orthogonal
functions (EOFs) used here, and goes into detail about the representation of the basin
modes by EOFs. The empirical orthogonal functions are discussed in detail elsewhere (for
example, Berkooz et al. (1993) and Wunsch (1996)).

To generate the EOFs, the quantity of interest was interpolated onto a uniform 101 3

101 grid at 10 time unit snapshots for a lengthy subinterval (0(3000/bL)) of the
integration time after equilibration. The EOFs were then calculated on this grid over this
time interval, with uniform weighting to every grid point and time step.

Let M be the (NxNy) 3 Nt matrix of the � eld f( x, y, t) interpolated onto the uniform
grid at the snapshot times, such that a column of M contains all (NxNy) of the grid points at
a given time, and each row of M contains all of the Nt snapshots of the value at a given
location. Then the EOFs are the left singular vectors of M with their elements rearranged
back onto the spatial grid.

M 5 USVT. (27)

One of the matrices U and V is square of size min(NxNy, Nt)
2, and the other will be

rectangular of size max (NxNy, Nt) 3 min (NxNy, Nt). Their columns are orthonormal
(i.e., UUT 5 I). The matrix S is square and nonzero only on the diagonal, with special
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values, the singular values, located on the diagonal. This singular vector decomposition
can be performed on any matrix M.

The heart of EOF analysis is the Eckart-Young-Mirsky theorem which states that the
most ef� cient approximation (in a least-squares sense) to the matrix M with reduced
degrees of freedom is

M ij < O
k51

K

UikSkkVkj
T , (28)

where only the singular vectors (columns of U and V) corresponding to the K largest
singular values are used in the sum (see, for example, Press et al., 1992). The MATLAB
routine svds was used to calculate the � rst K singular vectors. Typically, calculating 20
singular vectors was suf� cient to capture . 95% of the total variance,8 so that

O
i51

NxNy O
j51

Nt

M ij
2 < O

i51

20

Skk
2 . (29)

While only the � rst few EOFs are plotted in � gures 9–13, the MATLAB calculation
always involved determining more than 10 singular vectors.

The EOFs are the elements of the columns of U reordered back onto the spatial grid, or a
truncated set of these singular vectors retaining only the ones with the largest singular
values. Sometimes, the EOFs are de� ned instead as the orthogonal spatial basis functions
which, when the variability is projected onto them, maximize the amount of covariance
explained (cov ( xi, yj; xi9, yj9) 5 ¥t51

Nt f( xi, yj, tt)f( xi9, yj9, tt)). In this framework, the
reduction of the basis is called the Karhunen-Loève decomposition. The covariance can
also be produced as the (NxNy) 3 (NxNy) matrix, MMT. By multiplying (27) by its
transpose, it is easy to see that the singular vectors will be the eigenvectors of this matrix,
and the singular values will be the square root of the eigenvalues. Thus, the best truncated
representation of the covariance will be formed from the eigenvectors with the largest
eigenvalues, the same vectors which appear as columns of U in (28), the left singular
vectors.

The columns of V in (27) are the right singular vectors and truncating them to a set
retaining the maximum singular values maximize the amount of temporal covariance
explained in a least-squares sense (cov (tt; tt9) 5 ¥i51

Nx ¥j5 1
Ny F( xi, yj, tt)F( xi, yj, tt9) 5

MTM). They are used in this paper to indicate the projection of the � eld F onto the jth EOF
over all time steps k:

O
i51

NxNy

U ikMij 5 SjjVjk. (30)

8. The exceptions were the determination of relative vorticity EOFs for the largest Rei calculations with
boundary-enhanced viscosity, e.g., Figure 11. The streamfunction variance was always easily captured.
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Thus, each column of V is the time series of the presence of each EOF.
The power spectrum density (PSD) of each column of V was estimated by the Thomson

(1982) multi-taper method (time-bandwidth product 5 4, MATLAB routine pmtm) to
provide frequency information for each EOF. The 95% con� dence intervals for the
estimate plotted are those provided by the routine, which presume a chi-squared distribu-
tion. However, the numerical model is predictive rather than stochastic, so the ‘noise’ may
not be distributed as expected, and the con� dence interval should be considered a rough
estimate.

So, a few EOFs with the largest singular values and their corresponding time series (the
right singular vectors), give the most ef� cient representation of the full data series, as well
as maximizing the amount of temporal and spatial covariance explained. Some care must
be taken in interpreting the EOFs one by one, because they are empirical modes, rather than
dynamical modes of the system.

For example, EOFs are roughly able to represent basin modes, but not exactly as one
might desire. The free, linear basin modes have form and angular frequency given by:

c 5 5@c0 sin ~mpx/xe! sin ~npy!ei@vmnt1~x/2vmn!##, (31)

vmn 5
21

2pÎm2xe
22 1 n2 . (32)

m, n 5 1, 2, 3, . . . (33)

With trigonometric identities, (31) can be rewritten as a sum of two standing waves:

c 5 5~c0! sin ~mpx/xe! sin ~npy!Fcos S x

2vmn
D cos ~vmnt! 2 sin S x

2vmn
D sin ~vmnt!G (34)

2I~c0! sin ~mpx/xe! sin ~npy!F sin S x

2vmn
D cos ~vmnt! 1 cos S x

2vmn
D sin ~vmnt!G . (35)

The real and imaginary part operators are 5 and I. The spatial patterns of the standing
waves (in brackets) do not change as the phase of the wave changes, only their magnitude
changes with time. Because there are two standing waves required to represent the total
propagating wave, for a single basin mode there will be exactly two EOFs.

EOFs are required to be spatially orthogonal by de� nition, yet the basin mode standing
waves are not orthogonal in x with uniform weighting on a uniform grid. Expressing the
matrices and vectors as functions evaluated at the grid points and time steps,

M~x i, yj, tt! < O
k51

K

uk~x i, y j!skvk~tt! (36)

The basin modes are already orthogonal in time, up to indeterminacy of degenerate
frequencies. Every orthonormal basis will be of the form (for some d)
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v1~tt! 5
cos ~vmntt 1 d!

ucos ~vmntt!u
<

cos ~vmntt 1 d!

ÎNt/2
,

(37)

v2~tt! 5
sin ~vmntt 1 d!

usin ~vmntt!u
<

sin ~vmntt 1 d!

ÎNt/2
.

The root of the inner product over the domain of a function is notated with bar brackets,
e.g., uQ(t)u [ Î ¥t51

Nt ~Q~tt!!
2 and uJ( x)u [ Î ¥ i51

Nx ~J~ xi!!
2. The approximation is valid in

the limit that the sampling time Dt and total analysis interval obey NtDt @ 1/vmn @ Dt, a
condition easily satis� ed.

The basin modes are already orthogonal in y, so just as in time, the dependence of the
singular vectors on y naturally becomes a discrete Fourier transform. For the two standing
waves of a single basin mode there is only one function in y to account for, sin (npy).
Using the function uk which determines the values in the kth column of U,

u1~xi, y j! 5
f1~xi! sin ~npyj!

usin ~npyj!u
<

f1~xi! sin ~npyj!

ÎNy/2
,

(38)

u2~xi, y j! 5
f2~xi! sin ~npyj!

usin ~npyj!u
<

f2~xi! sin ~npyj!

ÎNy/2
.

The approximation is valid whenever the meridional wavelength is much longer than the
grid spacing.

The complication lies in the x-dependence. Orthonormalization of the basin modes
provides a basis spanning all sums of the two standing wave functions in x. For a
two-dimensional space, all of the orthonormal bases differ by a single rotation. First,
denote the standing wave x-dependence by

F1~x i! ; 5~c0! sin ~mpx/xe! cos S x

2vmn
D 2 I~c0! sin ~mpx/xe! sin S x

2vmn
D , (39)

F2~x i! ; 25~c0! sin ~mpx/xe! sin S x

2vmn
D 2 I~c0! sin ~mpx/xe! cos S x

2vmn
D , (40)

so that

c~x i, y j, tt! 5 sin ~npyj!@F1~xi! cos ~vmntt! 1 F2~xi! sin ~vmnt!#. (41)

Consider the following combination which gives all possible orthonormalizations (for
some a),

f1~x i! 5
f1~xi! 1 f2~x i!

uf1 1 f2u
sin ~a! 1

f2~xi! 2 f1~xi!

uf2 2 f1u
cos ~a!,

(42)

f2~x i! 5
f1~xi! 1 f2~x i!

uf2 1 f1u
cos ~a! 2

f2~xi! 2 f1~xi!

uf2 2 f1u
sin ~a!.
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The functionsf [ F/uFu are the normalized standing waves. The reader can verify that this
combination is normal and orthogonal. By inverting (42), the standing waves can be
expressed as linear combinations of these orthogonal functions. So, the projections of the
basin modes onto the orthogonal basis functions are

O
@:x

F1~x!f1~x! 5
uF1u

2
@2uf2 2 f1u cos ~a! 1 uf1 1 f2u sin ~a!#,

O
@:x

F1~x!f2~x! 5
uF1u

2
@uf1 1 f2u cos ~a! 1 uf2 2 f1u sin ~a!#,

(43)

O
@:x

F2~x!f1~x! 5
uF2u

2
@uf2 2 f1u cos ~a! 1 uf1 1 f2u sin ~a!#,

O
@:x

F2~x!f2~x! 5
uF2u

2
@uf1 1 f2u cos ~a! 2 uf2 2 f1u sin ~a!#.

For a full bi-orthogonalization as required by the singular value decomposition,we must
now adjust a and d to produce a choice of d which leaves the matrix S diagonal. It is easily
demonstrated using (37), (41), and (43) that

4 ¥@:x,y,t u1~x, y!M~x, y, t!v1~t!

ÎNyN t

5 uf1 1 f2u sin ~a!@uF1u cos ~d! 2 uF2u sin ~d!# 1

uf2 2 f1u cos ~a!@2uF1u cos ~d! 2 uF2u sin ~d!#,
(44)

4 ¥@:x,y,t u1~x, y!M~x, y, t!v2~t!

ÎNyN t

5 uf1 1 f2u sin ~a!@uF1u sin ~d! 1 uF2u cos ~d!# 1

uf2 2 f1u cos ~a!@2uF1u sin ~d! 1 uF2u cos ~d!#,
(45)

4 ¥@:x,y,t u2~x, y!M~x, y, t!v1~t!

ÎNyN t

5 uf1 1 f2u cos ~a!@uF1u cos ~d! 2 uF2u sin ~d!# 1

uf2 2 f1u sin ~a!@uF1u cos ~d! 1 uF2u sin ~d!#,
(46)

4 ¥@:x,y,t u2~x, y!M~x, y, t!v2~t!

ÎNyN t

5 uf1 1 f2u cos ~a!@uF1u sin ~d! 1 uF2u cos ~d!# 1

uf2 2 f1u sin ~a!@uF1u sin ~d! 2 uF2u cos ~d!#.
(47)

Setting (45) and (46) to zero gives simultaneous equations on a and d to make the matrix S
diagonal.The remaining equations (44) and (47) produce the two non-zero singular values.
As these two EOFs will exactly reproduce the basin mode, there will only be two nonzero
singular values.
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The superposition of multiple basin modes is not so simple. In the preceding
calculation all linear combinations of the sine and cosine of the same frequency
just resulted in amplitude and phase changes, so it was easy to determine the
temporal singular vectors. Likewise, once an orthonormal basis was found to span
the space of the standing waves, then a simple rotation produced all of the pos-
sible orthonormal bases. In general, the linear combination of multi-frequency sines
and cosines would not be easy. For the linear basin modes, when two modes with the
same y wavenumber but different x wavenumber are superposed, they will have
different frequencies, but have non-zero projections onto one another. A bi-
orthogonalization of these modes in x and time would again be required, but the four
resulting singular vectors would each possess some of the variance of each of the two
basin modes.

However, simple experiments combining a number of linear basin modes and
processing them as the numerical model output was processed revealed many facts.
(1) Low-wavenumber basin modes were reproduced accurately in space. (2) The
EOFs occurred with the correct frequency with two EOFs per basin mode. (3)
The EOFs resembled the standing waves of the basin modes with an arbitrary
phase difference. (4) When the y-wavenumber of the basin modes was the same,
some separation remained so that each EOF still possessed a dominant frequency,
but the modes were mixed. By choosing a different weighting function, the basin
modes could be made orthogonal, but in that case the resulting EOFs would be
biased toward detecting basin modes and would no longer minimize the uniformly-
averaged covariance.

When the basin modes occur on a mean � ow, they will be affected by it and no longer be
orthogonal in y or x. In this case, distinguishing between the (1, 2) and the (2, 1) basin
mode becomes less meaningful, as any basis spanning the spatial pattern of oscillations at
that frequency will do. The projection of a non-degenerate basin mode onto the EOFs may
be dominated by two EOFs, but it will have a nonzero projection onto some others; the
linear basin modes are not orthogonal in x, and the nonlinear basin modes are not
orthogonal in y. All of the EOFs shown in Figure 9, for example, have some signal in the
PSD at all of the frequencies present in the PSDs for other EOFs. However, note that the
largest peak in the PSD is typically many orders of magnitude larger than the next largest,
allowing reasonable con� dence in the association of these modes with the frequencies of
their largest peak. This remains true even for the highest Reynolds number calculations
studied.

The EOF analysis is biased toward detecting phenomena which are � xed in space and
temporally reoccurring, so in addition to the mixing of basin mode signals, other effects are
almost certainly aliased into the EOF signal. Other approaches have been suggested to
better quantify propagating modes (Barnett, 1983), but this EOF analysis seems adequate
for the purposes of this study.
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